askwiki
海森堡不确定性原理的具体内容是什么?它如何影响粒子测量?

参考资料

不确定性原理_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科 百度首页 登录 注册 进入词条全站搜索帮助 首页 秒懂百科 特色百科 知识专题 加入百科 百科团队 权威合作 个人中心 不确定性原理 播报讨论上传视频 物理学术语 收藏 查看我的收藏 0有用+1 本词条由《中国科技信息》杂志社 参与编辑并审核,经科普中国·科学百科认证 。 不确定性原理(Uncertainty principle)是海森堡于1927年提出的物理学原理。其指出:不可能同时精确确定一个基本粒子的位置和动量。 [8]粒子位置的不确定性和动量不确定性的乘积必然大于等于普朗克常数(Planck constant)除以4π [9](公式:ΔxΔp≥h/4π)。这表明微观世界的粒子行为与宏观物质很不一样。此外,不确定原理涉及很多深刻的哲学问题,用海森堡自己的话说:“在因果律的陈述中,即‘若确切地知道现在,就能预见未来’,所得出的并不是结论,而是前提。我们不能知道现在的所有细节,是一种原则性的事情。” 中文名 不确定性原理 外文名 Uncertainty principle 别    名 测不准原理、不确定原理 表达式 ΔxΔp≥h/4π 提出者 维尔纳·海森堡(Werner Heisenberg) 提出时间 1927年 适用领域 量子力学 应用学科 物理 目录 1定律定义 ▪不确定性原理 ▪简介 2定律影响 3发展简史 ▪旧量子论 ▪质疑 ▪现代不等式 ▪名称 4理论背景 ▪海森堡 ▪与玻尔的辩论 ▪玻尔理论 5观点 ▪决定论 ▪宿命论 ▪量子假设 ▪量子假设意义 ▪影响 ▪量子力学 定律定义 播报 编辑 不确定性原理 德国物理学家海森伯在1927年提出的不确定性原理,包括两力学量间的不确定性原理和能量与时间的不确定性原理,它的提出意味着量子力学不仅有了完整的数学形式,而且有了合理的理论解释。 [10]海森堡提出的不确定性原理是量子力学的产物。这项原则陈述了精确确定一个粒子,例如原子周围的电子的位置和动量是有限制。这个不确定性来自两个因素,首先测量某东西的行为将会不可避免地扰乱那个事物,从而改变它的状态;其次,因为量子世界不是具体的,但基于概率,精确确定一个粒子状态存在更深刻更根本的限制。 海森堡测不准原理是通过一些实验来论证的。设想用一个γ射线显微镜来观察一个电子的坐标,因为γ射线显微镜的分辨本领受到波长λ的限制,所用光的波长λ越短,显微镜的分辨率越高,从而测定电子坐标不确定的程度 就越小,所以 。但另一方面,光照射到电子,可以看成是光量子和电子的碰撞,波长λ越短,光量子的动量就越大,所以有 再比如,用将光照到一个粒子上的方式来测量一个粒子的位置和速度,一部分光波被此粒子散射开来,由此指明其位置。但人们不可能将粒子的位置确定到比光的两个波峰之间的距离更小的程度,所以为了精确测定粒子的位置,必须用短波长的光。 但普朗克的量子假设,人们不能用任意小量的光:人们至少要用一个光量子。这量子会扰动粒子,并以一种不能预见的方式改变粒子的速度。 所以,简单来说,就是如果要想测定一个量子的精确位置的话,那么就需要用波长尽量短的波,这样的话,对这个量子的扰动也会越大,对它的速度测量也会越不精确;如果想要精确测量一个量子的速度,那就要用波长较长的波,那就不能精确测定它的位置 [1]。 于是,经过一番推理计算,海森堡得出:△q△p≥ħ/2(ħ=h/2π)。海森堡写道:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度。于是,位置测定得越准确,动量的测定就越不准确,反之亦然。” [1] 海森堡还通过对确定原子磁矩的斯特恩-盖拉赫实验的分析证明,原子穿过偏转所费的时间△T越长,能量测量中的不确定性△E就越小。再加上德布罗意关系λ=h/p,海森堡得到△E△T≥h/4π,并且作出结论:“能量的准确测定如何,只有靠相应的对时间的测不准量才能得到。” 简介 在量子力学里,不确定性原理(Uncertainty principle)表明,粒子的位置与动量不可同时被确定,位置的不确定性与动量的不确定性遵守不等式 其中,h 是普朗克常数。 维尔纳·海森堡于1927年发表论文给出这原理的原本启发式论述,因此这原理又称为“海森堡不确定性原理”。根据海森堡的表述,测量这动作不可避免的搅扰了被测量粒子的运动状态,因此产生不确定性。同年稍后,厄尔·肯纳德(Earl Kennard)给出另一种表述。隔年,赫尔曼·外尔也独立获得这结果。按照肯纳德的表述,位置的不确定性与动量的不确定性是粒子的秉性,无法同时压抑至低于某极限关系式,与测量的动作无关。这样,对于不确定性原理,有两种完全不同的表述。追根究底,这两种表述等价,可以从其中任意一种表述推导出另一种表述。 [2] 长久以来,不确定性原理与另一种类似的物理效应(称为观察者效应)时常会被混淆在一起。观察者效应指出,对于系统的测量不可避免地会影响到这系统。为了解释量子不确定性,海森堡的表述所援用的是量子层级的观察者效应。之后,物理学者渐渐发觉,肯纳德的表述所涉及的不确定性原理是所有类波系统的内秉性质,它之所以会出现于量子力学完全是因为量子物体的波粒二象性,它实际表现出量子系统的基础性质,而不是对于当今科技实验观测能力的定量评估。在这里特别强调,测量不是只有实验观察者参与的过程,而是经典物体与量子物体之间的相互作用,不论是否有任何观察者参与这过程。 类似的不确定性关系式也存在于能量和时间、角动量和角度等物理量之间。由于不确定性原理是量子力学的重要结果,很多一般实验都时常会涉及到关于它的一些问题。有些实验会特别检验这原理或类似的原理。例如,检验发生于超导系统或量子光学系统的“数字-相位不确定性原理”。对于不确定性原理的相关研究可以用来发展引力波干涉仪所需要的低噪声科技。 [3] 定律影响 播报 编辑 该原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。测量一对共轭量的误差(标准差)的乘积必然大于常数h/4π(h是普朗克常数)是海森堡在1927年首先提出的,它反映了微观粒子运动的基本规律——以共轭量为自变量的概率幅函数(波函数)构成傅立叶变换对;以及量子力学的基本关系( ),是物理学中又一条重要原理。 [4]

b
baike.baidu.com

参考资料

海森堡不确定性原理 - MBA智库百科 亲爱的MBA智库百科用户: 过去的17年,百科频道一直以免费公益的形式为大家提供知识服务,这是我们团队的荣幸和骄傲。 然而,在目前越来越严峻的经营挑战下,单纯依靠不断增加广告位来维持网站运营支出,必然会越来越影响您的使用体验,这也与我们的初衷背道而驰。 因此,经过审慎地考虑,我们决定推出VIP会员收费制度,以便为您提供更好的服务和更优质的内容。 MBA智库百科VIP会员,您的权益将包括: 1、无广告阅读; 2、免验证复制。 当然,更重要的是长期以来您对百科频道的支持。诚邀您加入MBA智库百科VIP会员,共渡难关,共同见证彼此的成长和进步! MBA智库百科项目组 2023年8月10日 百科VIP 未登录 无广告阅读 免验证复制 支付方式: 微信支付 支付宝 PayPal 购买数量: 应付金额: 10元 汇率换算: 美元(USD) 按当月汇率换算, 包含手续费 打开手机微信 扫一扫继续付款 立即开通 PayPal支付后,可能会遇到VIP权益未及时开通的情况,请您耐心等待,或者联系百科微信客服:mbalib888。 温馨提示:当无法进去支付页面时,可刷新后重试或更换浏览器 开通百科会员即视为同意《MBA智库·百科会员服务规则》 支付成功 完成 全球专业中文经管百科,由121,994位网友共同编写而成,共计435,983个条目 查看 条目 讨论 海森堡不确定性原理 出自 MBA智库百科(https://wiki.mbalib.com/) 海森堡不确定性原理(Heinsberg's Uncertainty Principle) 目录[隐藏]1 海森堡不确定性原理简介2 海森堡不确定性原理的理论背景 海森堡不确定性原理简介 海森堡不确定性原理(Heinsberg's Uncertainty Principle)有时也被译成海森堡测不准原理。是指在一个量子力学系统中,一个粒子的位置和它的动量不可被同时确定。位置的不确定性 和动量的不确定性 是不可避免的: 海森堡不确定性原理的理论背景 来自"https://wiki.mbalib.com/wiki/%E6%B5%B7%E6%A3%AE%E5%A0%A1%E4%B8%8D%E7%A1%AE%E5%AE%9A%E6%80%A7%E5%8E%9F%E7%90%86" 打开MBA智库App, 阅读完整内容 打开App 不确定性与持续经营不确定性探讨 5页 不确定性 48页 信息人与不确定性 12页 不确定性分析 22页 战略不确定性 3页 论不确定性会计 18页 不确定性分析 99页 论不确定性会计 11页 不确定性分析 22页 不确定性分析 22页 提示:评论内容为网友针对条目"海森堡不确定性原理"展开的讨论,与本站观点立场无关。 百科VIP 打开APP 亲爱的MBA智库百科用户: 过去的17年,百科频道一直以免费公益的形式为大家提供知识服务,这是我们团队的荣幸和骄傲。 然而,在目前越来越严峻的经营挑战下,单纯依靠不断增加广告位来维持网站运营支出,必然会越来越影响您的使用体验,这也与我们的初衷背道而驰。 因此,经过审慎地考虑,我们决定推出VIP会员收费制度,以便为您提供更好的服务和更优质的内容。 MBA智库百科VIP会员(9.9元 / 年,点击开通),您的权益将包括: 1、无广告阅读; 2、免验证复制。 当然,更重要的是长期以来您对百科频道的支持。诚邀您加入MBA智库百科VIP会员,共渡难关,共同见证彼此的成长和进步! 2023年8月10日 此页面最后修订:15:40,2013年6月14日. ©2024 MBAlib.com, All rights reserved.

w
wiki.mbalib.com

不确定性原理_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科 百度首页 登录 注册 进入词条全站搜索帮助 首页 秒懂百科 特色百科 知识专题 加入百科 百科团队 权威合作 个人中心 不确定性原理 播报讨论上传视频 物理学术语 收藏 查看我的收藏 0有用+1 本词条由《中国科技信息》杂志社 参与编辑并审核,经科普中国·科学百科认证 。 不确定性原理(Uncertainty principle)是海森堡于1927年提出的物理学原理。其指出:不可能同时精确确定一个基本粒子的位置和动量。 [8]粒子位置的不确定性和动量不确定性的乘积必然大于等于普朗克常数(Planck constant)除以4π [9](公式:ΔxΔp≥h/4π)。这表明微观世界的粒子行为与宏观物质很不一样。此外,不确定原理涉及很多深刻的哲学问题,用海森堡自己的话说:“在因果律的陈述中,即‘若确切地知道现在,就能预见未来’,所得出的并不是结论,而是前提。我们不能知道现在的所有细节,是一种原则性的事情。” 中文名 不确定性原理 外文名 Uncertainty principle 别    名 测不准原理、不确定原理 表达式 ΔxΔp≥h/4π 提出者 维尔纳·海森堡(Werner Heisenberg) 提出时间 1927年 适用领域 量子力学 应用学科 物理 目录 1定律定义 ▪不确定性原理 ▪简介 2定律影响 3发展简史 ▪旧量子论 ▪质疑 ▪现代不等式 ▪名称 4理论背景 ▪海森堡 ▪与玻尔的辩论 ▪玻尔理论 5观点 ▪决定论 ▪宿命论 ▪量子假设 ▪量子假设意义 ▪影响 ▪量子力学 定律定义 播报 编辑 不确定性原理 德国物理学家海森伯在1927年提出的不确定性原理,包括两力学量间的不确定性原理和能量与时间的不确定性原理,它的提出意味着量子力学不仅有了完整的数学形式,而且有了合理的理论解释。 [10]海森堡提出的不确定性原理是量子力学的产物。这项原则陈述了精确确定一个粒子,例如原子周围的电子的位置和动量是有限制。这个不确定性来自两个因素,首先测量某东西的行为将会不可避免地扰乱那个事物,从而改变它的状态;其次,因为量子世界不是具体的,但基于概率,精确确定一个粒子状态存在更深刻更根本的限制。 海森堡测不准原理是通过一些实验来论证的。设想用一个γ射线显微镜来观察一个电子的坐标,因为γ射线显微镜的分辨本领受到波长λ的限制,所用光的波长λ越短,显微镜的分辨率越高,从而测定电子坐标不确定的程度 就越小,所以 。但另一方面,光照射到电子,可以看成是光量子和电子的碰撞,波长λ越短,光量子的动量就越大,所以有 再比如,用将光照到一个粒子上的方式来测量一个粒子的位置和速度,一部分光波被此粒子散射开来,由此指明其位置。但人们不可能将粒子的位置确定到比光的两个波峰之间的距离更小的程度,所以为了精确测定粒子的位置,必须用短波长的光。 但普朗克的量子假设,人们不能用任意小量的光:人们至少要用一个光量子。这量子会扰动粒子,并以一种不能预见的方式改变粒子的速度。 所以,简单来说,就是如果要想测定一个量子的精确位置的话,那么就需要用波长尽量短的波,这样的话,对这个量子的扰动也会越大,对它的速度测量也会越不精确;如果想要精确测量一个量子的速度,那就要用波长较长的波,那就不能精确测定它的位置 [1]。 于是,经过一番推理计算,海森堡得出:△q△p≥ħ/2(ħ=h/2π)。海森堡写道:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度。于是,位置测定得越准确,动量的测定就越不准确,反之亦然。” [1] 海森堡还通过对确定原子磁矩的斯特恩-盖拉赫实验的分析证明,原子穿过偏转所费的时间△T越长,能量测量中的不确定性△E就越小。再加上德布罗意关系λ=h/p,海森堡得到△E△T≥h/4π,并且作出结论:“能量的准确测定如何,只有靠相应的对时间的测不准量才能得到。” 简介 在量子力学里,不确定性原理(Uncertainty principle)表明,粒子的位置与动量不可同时被确定,位置的不确定性与动量的不确定性遵守不等式 其中,h 是普朗克常数。 维尔纳·海森堡于1927年发表论文给出这原理的原本启发式论述,因此这原理又称为“海森堡不确定性原理”。根据海森堡的表述,测量这动作不可避免的搅扰了被测量粒子的运动状态,因此产生不确定性。同年稍后,厄尔·肯纳德(Earl Kennard)给出另一种表述。隔年,赫尔曼·外尔也独立获得这结果。按照肯纳德的表述,位置的不确定性与动量的不确定性是粒子的秉性,无法同时压抑至低于某极限关系式,与测量的动作无关。这样,对于不确定性原理,有两种完全不同的表述。追根究底,这两种表述等价,可以从其中任意一种表述推导出另一种表述。 [2] 长久以来,不确定性原理与另一种类似的物理效应(称为观察者效应)时常会被混淆在一起。观察者效应指出,对于系统的测量不可避免地会影响到这系统。为了解释量子不确定性,海森堡的表述所援用的是量子层级的观察者效应。之后,物理学者渐渐发觉,肯纳德的表述所涉及的不确定性原理是所有类波系统的内秉性质,它之所以会出现于量子力学完全是因为量子物体的波粒二象性,它实际表现出量子系统的基础性质,而不是对于当今科技实验观测能力的定量评估。在这里特别强调,测量不是只有实验观察者参与的过程,而是经典物体与量子物体之间的相互作用,不论是否有任何观察者参与这过程。 类似的不确定性关系式也存在于能量和时间、角动量和角度等物理量之间。由于不确定性原理是量子力学的重要结果,很多一般实验都时常会涉及到关于它的一些问题。有些实验会特别检验这原理或类似的原理。例如,检验发生于超导系统或量子光学系统的“数字-相位不确定性原理”。对于不确定性原理的相关研究可以用来发展引力波干涉仪所需要的低噪声科技。 [3] 定律影响 播报 编辑 该原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。测量一对共轭量的误差(标准差)的乘积必然大于常数h/4π(h是普朗克常数)是海森堡在1927年首先提出的,它反映了微观粒子运动的基本规律——以共轭量为自变量的概率幅函数(波函数)构成傅立叶变换对;以及量子力学的基本关系( ),是物理学中又一条重要原理。 [4]

b
baike.baidu.com

Moonshot回答

海森堡不确定性原理是量子力学的一个核心概念,由维尔纳·海森堡于1927年提出。该原理表明,不可能同时精确确定一个基本粒子的位置和动量。粒子位置的不确定性和动量不确定性的乘积必然大于等于普朗克常数除以4π(公式:(\Delta x \Delta p \geq \frac{h}{4\pi}))。这表明微观世界的粒子行为与宏观物质很不一样。

海森堡不确定性原理的影响是深远的。它不仅表明了在测量粒子的位置和动量时存在根本的界限,而且意味着微观粒子的状态本质上是概率性的,不能同时具有精确的数值。这导致了对粒子行为的预测只能以概率的形式给出,而不是确定性的轨迹。此外,不确定性原理还涉及能量和时间之间的不确定性关系,即粒子的能量和存在时间不能同时被精确测定。

在实际的粒子测量中,不确定性原理意味着我们无法同时获得粒子位置和动量的精确信息。当我们试图更精确地测量粒子的位置时,对其动量的了解就会变得越模糊,反之亦然。这限制了我们对微观世界的测量和预测能力,是量子力学中一个基本的和根本的方面。

不确定性原理示意图

图片来源:https://inews.gtimg.com/newsapp_bt/0/11020886592/1000

这个原理不仅在物理学中有着重要地位,而且对哲学和我们对自然界的理解也产生了深刻影响。它揭示了自然界在最基本的层次上存在的一种基本的非确定性。

继续提问

津ICP备19006161号