askwiki
复杂系统在科学研究中有哪些典型的应用和挑战?

参考资料

新英格兰复杂系统研究所长文综述:复杂系统科学及其应用 导语 如何理解复杂系统?如何分析复杂系统?如何设计复杂系统?这是研究和学习复杂性科学会遇到的问题。美国新英格兰复杂系统研究所(New England Complex Systems Institute, NECSI)的 Yaneer Bar-Yam(创始人及所长)和 Alexander F. Siegenfeld 近期撰文,梳理了复杂性研究的共识,全面介绍了复杂系统科学这一领域的基本原理、常用方法和应用方向。 这篇长文综述的目标,是帮助具有高中数学水平的社会大众,理解复杂系统和社会现实。我们翻译了全文,供各领域学者、工业界、政府和慈善组织的决策者参考。针对部分关键概念,我们在文中补充了译注。 目录 一、引言 二、复杂系统科学中的基本原理 三、分析复杂系统 四、复杂系统与不确定性 五、总结 很多概念和定量的分析框架所基于的标准假设对于众多复杂的物理、生物和社会系统并不满足。复杂系统科学可以告诉我们这些假设在什么情况下失效,以及为什么失效,并提供了可以理解复杂系统属性的另一个框架。本综述介绍了复杂系统科学的一些基本概念,包括复杂度曲线,有效性和适应性的权衡,系统复杂度和环境复杂度匹配的必要性,多尺度分析以及进化过程。复杂系统科学的目的是对系统一般属性的理解和讨论,而不是对于具体系统动态的建模。相对于提供全面的综述,本文更希望是来科普一些可用于对我们世界里的复杂系统进行理解和应用的简单概念和分析方法。本文将以简单的语言进行,只需要高中层次的数学和科学背景即可,以便让各个领域的学者与各个行业、各级政府和慈善机构的决策者以及其他任何对系统和社会感兴趣的人都可以看懂。 引言 我们应该如何科学地研究物理、生物和社会等复杂系统?实证研究虽然有用,但它们本身还不够,因为所有实验都需要一个可以解释它们的理论框架。尽管当前存在许多这样的框架来理解系统的特定组成部分或方面,但大多数定量研究所依据的标准假设通常并不适用于整个系统层次,从而导致大尺度行为的原因和后果被错误地描述。本文对复杂系统科学进行了介绍,展示了它的一些应用,它能帮助我们在周边复杂系统中进行有效决策。复杂系统科学着重于复杂系统的一般属性,而不是像动态系统、多主体建模、网络科学和混沌理论等子领域中对特定动态行为的建模。第II 节介绍了关键概念,包括复杂度曲线,效率与适应性之间的此消彼长以及使系统的复杂度与其环境复杂度相匹配性的必要性。本文第III 节讨论了对复杂系统的分析,关注了一个经常被忽略的问题,即标准假设何时适用何时不适用(不适用的情况更加重要)。第IV 节讨论了一些有效干预复杂系统的原则,即使它们的完整描述通常超出了人类的理解范围。第V节进行总结。 第一部分、复杂系统科学中的基本原理 (BASIC PRINCIPLES OF COMPLEX SYSTEMS SCIENCE) A. 为什么要复杂系统科学(Why complex systems science)? 复杂系统科学研究的对象是包含很多构成组元(components)的系统,范围极广,包括物理系统、生态系统和社会系统等。但不像其他学科那样关注构成系统的组元本身,复杂系统科学关注的是系统中的组元是如何关联起来的。如图1所示,不同的列分属不同的学科,如物理学科会研究雪花、炮弹弹道、气体这些由分子构成不同对象,而复杂性科学研究会从横向上综合来进行,如一群气体分子、一群生物、一群人这些系统的共同规律。系统的性质主要取决于其组元的关系,而不是组元本身[1]。复杂系统科学的目的是提供统一的科学框架,允许思想的泛化(和在此基础上的锐化),促使新应用、新连接的发现。 [1]译者注:我们学过物理的人知道,无论动物和植物,都是由有限种类的原子构成,再微观一些就是6种夸克和6种轻子。但动物和植物具有不同的功能。即使是同一类生物,个体之间的差别也很大,其原因在于其物质的组合形式不同。 即使有一个非常简单的系统,要想对其所有的细节进行完整的描述也是不可能的。好的分析研究需要寻找那些并不依赖于所有细节的系统属性。这种属性是存在的,因为复杂系统往往具有普适性 (Universal-Examples of Behaviorsity)[2]。统计物理科学告诉大家人类有洞察这种系统特征的能力。统计物理上,尝试刻画系统特定状态的行为(例如一个气体系统)是一个艰巨的不可能的任务,但刻画所有可能状态的集合不仅容易处理,而且还可以为我们提供相关信息的模型(例如压力,温度,密度,可压缩性等)。这是一个功能强大的分析视角,不仅可以应用于物理系统,也可用于生物系统和社会系统。比如,熵 (entropy) 是物理学的一个重要概念,它描述系统可能状态的数量。复杂系统科学所关注的系统的复杂度 (complexity) 或者复杂性程度,本质上就是一种广义熵。 [13]译者注:最近发表的文章“The Eighty Five Percent Rule for Optimal Learning”,通过研究表明对于动物学习和人工神经网络的学习在错误率为(error rate)达到15%左右时候最优,学习效率最高,暗示着这种可以带来益处的不确定性和可变性具有一定的优化尺度(比率),太小则让进化速度太慢,过大则缺乏足够的稳定性,会让系统失去前进的方向。 竞争性市场经济提供了系统如何在不确定性条件下蓬勃发展的另一个例子。由于我们天生并不知道如何成功,必须同时创造和改进许多潜在的创新和业务,成功的创新和业务将扩大而不成功的创新和业务将被抛弃。这样的过程将使成功的部分得到进一步改进。但是,如果没有被有效监管的多尺度合作框架,经济体系的大尺度部分可能会针对错误的目标进行优化,从而造成有害的社会均衡(harmful societal equilibria)。同样,大型组织的内部流程可以遵循这样的演化模式,组织中的一小部分可能会失败但整体会因此得到改善;而如果没有这种灵活性(flexibility,),面对不断变化的外部环境,整个组织可能会立即失败。在某些情况下,整个组织的失败为更有效的组织取代它提供了空间(假设经济已充分分散且具有竞争力,因此所讨论的组织不会有“太大而不能倒闭”的情况)。但是,政府的倒闭要尽量避免,因此,施政系统更应该本身具有一定的灵活性以从随机性和不确定性中受益。不允许发生小的故障,就会终止进化过程并建立相互依存关系,长期来看会削弱系统的功能,最终导致系统风险(这或许违反大家的直觉,但确实如此)。为了在不确定性中蓬勃发展并超越个体决策的复杂性,系统可以包含进化过程,即使它们最初非常有限,但它们会随着时间的推移自然得到改善。一般来说,一个系统只能设计出复杂度更低的系统,但随着时间推移,进化可以让系统变得比其设计者变得更加复杂。要利用这个机制,需要做到如下两点: 第一是允许系统中有足够的变化,让系统可以探索所有可能的空间。由于大量的变化意味着大的复杂度,而复杂度与尺度此消彼长,因此这种变化必须是在小尺度的空间和时间上发生。例如,对于一个施政系统,允许每个城市具有一定的独立性,就可以让它们同时并不断地试行不同的方案。相反,如果让国家的每个城市执行同样的方案,结果就会差很多。第二就是允许在系统的各个部分之间进行通信,以便在其他地方采用成功的选择(例如,某个城市复制了其他城市的成功做法)。计划总会有意想不到的后果;关键是要让意想不到的后果对整个系统有利而不是有害。这需要经常放弃直接控制,以使复杂度可以随时间自动增加。 B. 多尺度进化过程(Multi-scale evolutionary processes) 成功的进化过程通常不是只有无休止的竞争,而是包含着竞争和合作,这两者均发生在多个尺度上。例如,细胞在多细胞生物内合作以更有效地与其他生物竞争,而生物会在物种内部和物种之间进行合作以更有效地与其他物种竞争。大尺度的竞争会自然地孕育小尺度的合作——为了使一个团队有效地与另一个团队竞争(在大尺度上竞争),必须在该团队内部进行合作。合作也可以促进竞争——有时候,实现集团共同目标的最佳方法是鼓励小集团之间的健康竞争。这些小集团又必须促进内部合作以有效地在子集团之间展开竞争,他们也可以通过在成员之间引入一些健康的竞争来提高内部合作的有效性。如果这些成员本身又是团体,则竞争引起合作再引起竞争的过程可以扩展到更小的尺度,具体过程如图10所示。这个过程也可以反向进行:为了更有效地竞争,个人可以相互合作以形成团体,而团体又可以合作以形成更大的群体,依此类推。因此,各种规模(尺度)的团体之间合作与竞争的复杂网络自然可以发展演变。 为了促进有效的团队合作,竞争必须有合适的结构设计(properly structured)。一支足球队的各个队员以自己得分为目标,与团队的其他成员竞争,这不会让球队取得更好的成绩(有效),但让队员竞争“最佳球员”的头衔可能会让整个球队更有竞争力。竞争必须设计得让竞争者被激励,让他们做对集体更好的事情(可能有好有坏,但整体要好),否则会发生常见的悲剧。竞争可能会误入歧途,这凸显了要有多尺度结构的重要性(让竞争在多个层次上发生),而不是让系统中的每个人都与其他人竞争。市场经济系统的成功不是因为自由市场产生最佳结果(现实世界中的市场通常会大大偏离自由市场模型的假设,并且具有很多外部性),而是让内部尽其所能。适当监管的市场体系允许自然地发生多尺度的进化过程,使得创新和复杂性可以远远超出任何人的想象,更不用说设计者了。 总结 具有许多组元的系统通常表现出涌现行为,这是一种源自组元之间的关系而不是组元本身特征的行为。然而,统计物理学的早期见解是,尽管不可能描述数万亿个分子的细节,但通过分析这些分子状态可能性的空间,而不是这些分子的运动等具体特征,就可以获得对于宏观性质的理解。尽管可以用分子的平均行为来描述许多宏观特性,但是某些物理现象(例如相变)的宏观特性不能通过对系统组元行为的平均来理解。因此,物理学家被迫开发新的多尺度研究方法。同样,虽然标准的统计方法可以推断出系统许多组成部分的平均属性,甚至可以成功地对某些生物和社会系统进行建模,但这些方法对于其他系统更可能是失效的结果。 通过考虑可能的行为空间的系统视角,可能会对系统有更深入的洞察(insights),这是仅仅考虑特定问题或危机的大致因果关系所不能得到的。系统的复杂性,取决于系统潜在行为的数量(即可能性的空间),是把握大尺度特征的一个出发点,就像熵往往作为统计物理的出发点一样。因为系统的不同行为的数量取决于细节的程度(如在较低分辨率下表现相同的行为,在较高分辨率下可能会不同),所以复杂度取决于尺度。组元之间的相互依赖会通过限制单个组元的自由度来减小系统在较小尺度上的复杂度。因此,对于由相同组元组成的系统,在小尺度和大尺度的行为数量之间存在根本的此消彼长(tradeoff)。这种尺度上和复杂度上的权衡关系到系统在适应性和效率之间的取舍抉择,适应性取决于系统对小尺度扰动的响应多样性,而效率则取决于系统可以运行的尺度(规模)。系统不存在必须具有某个复杂度的最优尺度,相反,最有效的系统需要在各个尺度上都与环境的复杂性相匹配。 在分析数据或创建组织结构时,传统标准方法往往低估了组元相关的重要性以及由这些相互依赖性引起的复杂度,它们将不再适用。在某种程度上,可以通过将数据分析或组织结构与系统中的自然划分进行匹配来缓解这些问题。由于复杂系统是行为发生在多个尺度上,因此对复杂系统成功的分析和组织本质上也必须是多尺度的。但是,即使配备了所有适当的信息和工具,人类对大多数复杂系统的理解也将不可避免地存在不足,系统具有不可预测性(with unpredictability being the best prediction)。为了面对这个现实,我们必须设计系统具有这样的能力,它能像进化过程一样被不可预测性增强而不是削弱。这样的系统是灵活的,可以同时执行多个过程,并让这些过程在多尺度合作框架内相互竞争,让有效的行为在系统中得到复制传递。只有这种随着时间的流逝通过不断尝试和试错而变得越来越复杂的系统,才能达到可以解决超出人类理解能力极限的复杂问题的复杂度。 译者说明: 本文由陈清华翻译,沈忱和刘培源审校。陈清华工作于北京师范大学系统科学学院,现为 Brandeis 大学和 NECSI 访问学者;沈忱现工作于 [7]译者注:各个国家的教育也具有这样的特征,书籍和电视传媒提供了大尺度低复杂度的教育方式,家教或者其他一对一培训等提供了最低尺度最大灵活度的教育方式,学校则在中间尺度上提供了中间复杂度的教育。 欧元区的境况提供了一个多尺度复杂度不匹配的可能例证。在这个区域,财政政策的制定主要在单个国家和地区进行的,因此在国家范围内具有更高的复杂度但在整个欧元区尺度上的复杂度相对较小,而货币政策的制定尺度就在整个欧元区,因此在整个欧元区这个大尺度上有较好的复杂度,但它会缺乏在各个国家/地区这个小尺度上变化的能力(即缺乏小尺度复杂性)。许多人认为欧元区的经济发展遇阻,就是因为这种不匹配阻碍了财政政策与货币政策之间有效的交互作用。 实际问题处理时是很难做精确讨论的,因为精确地估计尺度和复杂度是难以做到的,所以复杂度随着尺度变化的曲线基本上不能准确地描绘出来,但近似的有关复杂度不匹配的分析还是可以做的。正如即使在系统的精确机制和结果存在不确定性时也可以使用这种对可能行为空间的分析一样,物理学家可以利用熵的性质(有时考虑与熵有关的量如何在整个尺度上变化)对相变进行分类。即使它们无法根据第一原理确定精确的数量,例如相变所产生的热量或发生的温度。只是如果要讨论如何纠正具体的不匹配问题,还是需要更细节的分析。 无论在什么尺度上讨论,复杂度的大小本质上没有好坏。只是如果要执行的任务的复杂度与执行该任务系统的复杂度不匹配时,就有问题了。尤其要注意,某种情况下的系统又可能是另外情况下的一个任务或者环境,这样,一种帮助某个系统与其环境进行交互的复杂度可能会阻止其他系统的有效管理。顺带一提,人类的情感特点似乎反映了这一原理:当我们所处的环境过于简单时,我们会感到无聊;若环境太复杂了,我们又会感觉不知所措。 F. 分块的系统(Subdivided system) 即使在当系统的复杂度和环境的复杂度一致的情况下,仍可能存在复杂度不匹配的问题。举一个例子,一个系统有四个人,他们每个人能搬动 100 斤的物体,假设每一对中的两个人会一起协调一致干活而组成两个朋友对。若当前任务是搬走两个各 200 斤的沙发,这个任务是能被完成的,因为这个 4 人系统在适当的尺度下具有足够的复杂度,每对朋友一起搬一个沙发就能完成任务。但如果让每对朋友中的人被安排去搬不同的沙发,这个时候搬同一个沙发的就不是一对协作的朋友,按我们的假设不是朋友的人不能协作,那他们就搬不动沙发了。这个任务失败的原因是虽然两对朋友的系统具有搬动两个沙发的复杂度,但朋友系统的某一种划分与自然的沙发系统的划分是不匹配的。这种不匹配可以这样看,某个沙发需要 200 斤的协作能力,但这两个人分别提供了 100 斤的能力。学术部门的组织可以提供一个更好的划分不匹配(subdivision mismatch)的例子。当前,为了组织知识和协调人员,学术界形成了多层的分块结构,包括各个部类、子领域等,整个学术界在多个尺度上都有足够的复杂性(这个尺度可以用协调的人员数量或者知识的量表示)。但学术界需要处理的学术问题集合存在一个自然的细分。如果这两种细分不同,即使学术界在多个尺度上能保证了复杂性要求,但没有办法解决看起来应该可以解决的学术问题。最近几十年交叉学科中心和计划的兴起,表明人们已经察觉到这种不匹配,但整个学术体系的结构(包括学生的培训方式,学术成果的发表等)仍可能会阻碍一些没有完全属于某个学科或子学科的科学问题的研究进展。 以上示例说明了这个原理——为了使系统对其环境的某些行为集做出不同反应,不仅要在整个系统的各个尺度上和环境行为各个尺度的复杂度相匹配,而且系统的每个子集的复杂度也要和环境所对应的子集在所有尺度上都能匹配。这种匹配要求前者至少具有和后者相同的复杂度。应用此方法的良好经验法则如下:有关系统独立部分的决策可以独立做出,而相关联的部分则需要相关联地制定。因此,做出此类决策的组织应进行相应划分,以便其划分与它们相互作用的环境的自然划分相匹配。在人类大脑中是存在这种分块的,一些神经网络也采用分块的形式研究。一些文献研究表明,系统采取分块的方式匹配环境的自然划分要比采用增加内部交互作用的方式要获得更好的效果[8]。 [8]译者注:对资源的管理,包括人力资源和物质资源,其中最重要的是要素的优化配置,这个配置实际上也是对于自然任务划分的合理应对。为满足不同业务的需求,有效的公司进行合理的部门调整以积极应对。 G. 层级性(Hierarchies) 系统的一般组织方式是通过控制其层次结构。在一种理想化的系统层次结构中,没有横向连接,涉及层级结构多个组元的决策都必须通过一个公共节点,其他组元都(直接或间接)在这个节点的管辖下。如图5所示,这种层次结构系统的复杂度曲线取决于控制结构的紧性程度(rigidity)。一个极端情况是,任何决定(无论大小)都由层次结构的顶部做出。这种结构在不同尺度(层级)上会具有同样的复杂性,因为所有的决定都是同样的人做出的,具有同样的可能应对方式。另一种极端是层次结构中的所有个体在此结构中没有信息沟通,自行决策,此时整个结构的复杂性比个体层次的复杂性高不了多少。一般的层次结构都是介于这两种极端之间,不同的决策是分别在不同的层级做出的。 没有天生就优异的层次结构类型。对于一种具体的环境,最好的层次结构是它的复杂度构型可以和需要其完成的任务复杂度相匹配。紧控制这种顶层决定(top-heavy)的层次结构不适合这种底层具有很多变动需要应对的环境状况。同样,松控制(loose control)的层次结构也不适合处理需要大尺度(规模)处理应答的环境。例如,美国政府系统具有较强的中心化特征,相对地方的州政府,联邦政府的权力很大。这种层次结构无法在小尺度上具有充分的复杂度来匹配和应对地方性的变动。但反过来,一个去中心化的系统无法保证在大尺度(规模)上具有足够的复杂度来很好地处理国家层级的问题和应对方案。将决策权赋予层次结构的高层可以提高尺度(规模)和有效性,但会减少适应性,因为这种情况下一旦决策是错的,影响巨大,恢复也更为困难。我们不仅要考虑政府整体的复杂性匹配,同样还要考虑到施政系统的子划分(结构)以适应环境的自然划分。在同样的州,美国的城市区域在某些方面彼此较为相似,但它们和乡村的差异很大。所以,将美国划分为 50 Scale 是文章中两个最重要的概念,但译者感觉其意义极为丰富,很难用某个具体的汉语词汇表达,译者在文字中大部分会将他们翻译为复杂度和尺度,在一些地方也会采用其他的词,如复杂性、规模等。为方便理解,一些重要的词汇或者句子附上了英文原文。原文致谢部分没有翻译。 推荐阅读 Science经典论文:如何检测复杂生态系统中的因果关系? 2020年复杂性科学必读经典:入门+进阶书单20本 超越简单规则——用图神经网络对复杂系统进行自动建模加入集智,一起复杂! 集智俱乐部QQ群|877391004 商务合作及投稿转载|swarma@swarma.org ◆ ◆ ◆ 搜索公众号:集智俱乐部 加入“没有围墙的研究所” 让苹果砸得更猛烈些吧! 更多论文内容点击下页链接: 集智斑图 - 用知识连接探索者 文章被以下专栏收录 复杂性科学 [4]译者注:前面提到的电器修理工观察电视机的尺度或者层次就要比使用者观察的层次低,修理工除了判断电视机能否工作外,还要了解更多的电视机元件的细节,因此,对于修理工,电视机有更大的复杂度。 D. 复杂度和尺度上的此消彼长(tradeoffs between complexity and scale) 复杂性需要序(order),复杂系统的形成确实涉及熵的降低,需要降低系统在小尺度上的复杂度。即要获得高尺度上的复杂性(增加复杂度),系统中的微观个体必须有一定的关联,这种微观关联会降低系统在低尺度上的复杂性(减少复杂度)。更精确地讲,对于固定组元集合及个体可能行为集合的系统,复杂度与尺度的关系曲线下方的面积是一定的,因为这个面积与组元的相互作用无关。需要注意的是,有时候引入系统组元之间的交互可能会改变系统组元的行为种类,从而使曲线下面的面积增加。例如当系统中的两个人进入交谈,这能反映出两个人的关系,而交谈也是一个新的原先没有考虑的个体行为。 考虑一个有一些工人的工厂,可以将一个有很多工人的工厂在一定的时间内生产的同类产品的数量作为尺度(规模)的表示;而在要求的尺度(规模)条件下,工厂能够生产的产品类型的数量可以作为工厂的复杂度。这儿的规模和复杂度是紧密相关的,要想生产大规模的同类产品,就需要很多工人同时进行同样的工作,从而减少复杂度;反之,只有在工人具有较高的独立性时,才有机会创造出更多类型的产品,但此时就不能在产品的数量上有高的要求。当然,可以通过增加机器和工人使工厂在复杂度和规模上都有所提高,但当工人和机器的数量一定时,就只能追求其中的一个:要么规模要么复杂度,它们中的一个增加时另一个就会减小,如图3所示[5]。 [5]译者注:一个学者的精力总量是有限的,他/她可以广泛涉猎不同的领域,但容易浅尝辄止,很难在某一个领域获得深入的洞察;他/她也可以长期在一个具体领域钻研,由一系列内容相关逐步深入的文章形成丰硕的成果集。 对复杂度和规模的抉择实际上是对适应(adaptive)还是效率(effective)的抉择。复杂度越高,个体行为相对独立,具有更多的行为方式,整个系统会有更大的适应性;反之,若系统中的很多个体都进行高度协作,可以高效率完成既定任务,满足大规模或者大尺度上的要求,但这种有效系统对于自身或者环境未来不确定变化的适应能力会降低。设计一个可以应付所有可能冲击的高适应性系统,一定是以牺牲系统的某些大尺度功能为代价的。前苏联的人们相信他们的经济将超过资本主义经济,因为资本主义国家经济体有过多浪费,例如很多企业会因为做同样的事情而存在相互竞争,而让经济体中的每个人都协作起来会让经济运作会更加有效。确实如此!但构建大规模的经济结构是以牺牲低尺度(规模)的复杂性为代价的,结果就丧失了适应性,这种经济体面对多变环境的新情况会缺乏应变能力。当然,监管不当的资本主义经济,也可能会因为市场力量的过于集中、有害反馈环的存在或者个体的从众行为而变得适应性不良。 无论市场、政府还是其他系统,想要提高其在大尺度上的复杂度,就必须减小其中组成个体的复杂度。但很多时候,以小尺度部分个体的自由为代价,而换取大尺度(规模)上的合作,可能是非常值得的。 E. 为什么要复杂(Why be complex) 必要多样性法则 (Law of Requisite Variety) 要求,为了保证有效性,系统必须足够“复杂”得和环境一样,这样系统才能对于环境的交互进行合适的应答。若环境有 100 种不同行为需要应答,一个系统如果能对这些不同行为都给予不同的反应,那么这个系统就是有效的;但如果系统只有 10 种可能行为,那么这个系统对于环境而言是无效的[6]。

z
zhuanlan.zhihu.com

参考资料

)。而对于具有稳定模式的事件,只要我们能够收集到足够多的历史数据,就可以预测事件发生的概率。 比如,通过分析用户在互联网上的行为特征,就可以推荐他/她可能感兴趣的内容(如短视频、新闻、书籍、产品等)。感兴趣的读者可以阅读邓肯·瓦茨( Duncan J Watts)的《Everything is Obvious》一书,书中有更多例子(该书的中文译本为《反常识》)。该书中提到,常识在处理简单问题时非常成功和有效,但在处理(复杂性科学中的)复杂问题时失败的概率很高。所以对于复杂问题,过去的成功经验实际上效果非常有限,甚至会起到负面作用(例如,黑天鹅)。 跨学科研究的优势与挑战 理解复杂系统需要跨学科研究。复杂性科学将来自不同学科的认识整合为全面的理解,可以使我们进一步发展具有普适性的方法。例如,我们可以利用物理学的知识来识别社会系统中的规律并用于解决实际问题。因此,主要的挑战在于,弄清楚哪门学科、何种视角有助于理解所研究的目标系统。对很多复杂系统而言,出现的问题是跨学科问题,即超出单一学科领域的问题,需要跨学科方法。目前的关键是如何加强多学科合作,从教育的角度来讲,需要进行一些教育改革,以培养复杂性科学研究中的跨学科研究人才,对于这一问题,我认为在不同学科课程中增加复杂系统相关课程和实践是有益的。 最后评论 全世界复杂性科学研究者需要携手共创未来,我们应该加强联系与合作,共同推动复杂性科学的发展,促进复杂性科学在人类生存和发展等重要领域中发挥作用。 复杂系统的骨架:网络 —— 专访“科学探索奖”获奖人吕琳媛 吕琳媛 | 受访 刘培源 | 采访 请介绍一下您的研究方向。 吕琳媛:我主要从事统计物理与信息科学交叉领域的前沿研究,关注网络信息挖掘基础理论和关键方法。网络信息挖掘是复杂系统研究的重要方向,其核心问题是如何快速、高效地从大规模网络中挖掘出有价值的信息。这方面的研究不仅为理解大脑、信息、城市等各类复杂系统的结构、功能、演化机制提供了理论框架和方法论的支撑,也具有重要的应用价值。近年,我们重点关注网络高阶分析(即以一种新的高阶视角对网络进行研究)方面的理论及应用研究。 为什么复杂系统研究需要复杂网络? 吕琳媛:复杂网络是描述复杂系统的抽象模型,其中,节点表示复杂系统中的组成元素,节点之间的连边表示各元素之间的相互作用。真实世界中的许多复杂系统都可以用复杂网络的形式进行描述,不同系统所具有的共性蕴含在其所对应的网络结构中。复杂网络也为不同学科领域的复杂系统研究提供了重要的理论和方法,是复杂系统研究发展到21世纪,伴随着互联网、大数据、人工智能的发展涌现的一个新兴前沿方向。 什么是链路预测和节点排序?请谈谈您在这两方面取得的主要研究成果。 吕琳媛:我们知道,一个网络包含两个基本要素,即节点和连边(或链路)。在网络的框架下,网络信息挖掘就可以从对节点和连边的认识这两个基本的研究路径出发,分别对应重要节点挖掘和重要链路挖掘两个问题。前者本质上就是对节点的重要性进行排序,而后者又可细分为对缺失链接的预测,即链路预测问题,以及对虚假链接的识别问题。 链路预测基于已观察到的网络结构来预测网络中未连接的两个节点之间形成链路的可能性,预测对象既包括可能在观察中被忽略的链路,也包括未来可能出现的链路。链路预测本质上是从网络链路的微观层面解释网络结构生成的原因,具有广泛的应用场景,例如,其可以用于在线社交网络的好友推荐、指导生物网络的结构验证实验、预测疾病和致病基因的关系。 在网络中,重要节点是指相比其他节点能够在更大程度上影响网络的结构与功能的一些特殊节点,节点排序(或称节点重要性排序、重要节点挖掘)旨在将这类特殊节点识别出来。对重要节点挖掘的研究不仅具有理论意义,也可以解决与社会经济相关的现实问题,如遏制传染病传播、控制社交媒体舆情、防控级联故障等。 近年,我们利用统计物理学的理论和方法解决了信息领域中的若干重要问题,原创性地提出了以系综理论和似然分析为基础的网络信息挖掘基础理论体系,以及以扩散动力学为基础的网络信息挖掘系列方法,相关研究推动形成了一个新的物理、信息交叉研究方向,成果也获得广泛应用。 比较有代表性的是,在链路预测方面,我们首次提出网络链路可预测性的概念并给出定量刻画指标,被国际同行称为链路预测领域的一个里程碑;在重要节点挖掘方面,我们首次揭示了过去30年被认为不相关的三个重要指标——度中心性,H-指数和核数——的内在联系(即网络的DHC定理),并提出有效挖掘网络中重要节点的系列算法,解决大规模演化网络的重要节点识别难题。目前已有部分研究成果被应用于网络舆情监控、致病基因预测、医保欺诈识别、电子商务服务等实际系统中。 2021年复杂系统研究者获得诺贝尔物理学奖对复杂科学意味着什么? 吕琳媛:这是诺贝尔物理学奖首次明确授予对复杂系统的研究,对复杂系统研究具有里程碑意义,对于从事相关研究的学者也是一个极大的鼓舞。这既说明复杂系统领域的研究和重要成果已经获得科学界的认可,也表明通过具体系统的研究发展复杂系统的基本理论仍然任重道远。我相信,这一事件将推动复杂系统研究的进一步发展,尤其是在当今的数字化时代,复杂系统与复杂网络的理论和方法有了更为广阔的用武之地,在其与人工智能、生物、社会、经济等多学科交叉融合的过程中不断涌现出更具挑战的新问题,有待进一步深入探索。 恭喜您获得国际网络科学学会 2022 Erdős-Rényi 奖,您怎样看中国学者在复杂科学领域的贡献? 吕琳媛:在我国,最早由钱学森先生与一批科技人员对复杂系统进行了积极的探索,我国知名系统科学专家方福康老师也是其中之一,他也是我的母校北京师范大学管理学院(现在的系统科学学院)的创始人。钱老等前辈早在20世纪70年代就对复杂性科学进行了研究,创造性地建立了系统科学与系统论。21世纪前夕,小世界网络、无标度网络等的提出使许多物理学家(尤其是统计物理学家)认识到,使用复杂网络作为复杂系统研究工具的重要作用。我国学者对复杂系统及复杂网络的研究主要分为三条研究路径: • 一条以理论物理、统计物理学者为代表,强调对复杂系统基础理论的研究; • 一条以计算机、控制领域学者为代表,关注对系统的管理、控制以及在工程领域的应用; • 还有一条关注复杂系统方法在社会经济领域的应用。在复杂系统研究的各个方向,中国学者的研究贡献都越来越突出。 中国复杂系统研究的发展,从相关会议的举办就可见一斑:中国网络科学论坛自2004年开始已举办了18届,全国复杂网络会议自2005年开始已举办了17届,还有中国系统科学大会、全国统计物理与复杂系统会议等众多相关会议在持续举办,说明复杂系统研究在我国愈发受到重视。另外,2018年国际网络科学冬季会议NetSci-X首次在中国杭州举办,国际网络科学大会NetSci于2022年7月在上海顺利召开,也标志着国内网络科学研究得到了国际同行的认可。在一些领域,我们已经和国际同行处在同一水平,甚至做出了自己的特色。当然,要想完全引领发展,还有很长的路要走。基于中国人固有的系统整体思维观、互联网在中国本土广泛的实践应用以及国家对科技创新的高度重视,我们坚信,未来中国一定有机会成为全球复杂系统研究的高地。 当前火热的跨学科研究及其对复杂科学的意义是什么? 吕琳媛:这是一件好事。传统的科研模式已不能适应飞速发展的社会需要。网络时代,不管是科研活动内部,还是科研与经济活动之间,除了分工,更需要合作。这个合作不是像组装零件那样简单,而是一种有机的整合。应该说,在万物互联的今天,分工就是为了更好的合作,对于科研活动(特别是交叉科学的研究)而言,我们既需要在各自的学科领域进行深入持续的研究,也要看到其他学科前沿的发展及其与自身研究的关系,这样才可能产出更有影响力的研究成果。另外,今天人类面对的问题越来越复杂,已经很难从单一学科去解决,这也为复杂科学这类跨学科交叉研究提供了大展拳脚的契机。当然,这种交叉一定是围绕关键科学问题来展开的,而不是简单的为交叉而交叉。 怎样看复杂科学与人工智能的结合? 吕琳媛:人工智能技术为复杂系统研究提供了前沿方法,在解决相关问题的准确性和计算效率等方面具有显著优势。尤其是在当前海量数据的背景下,考虑到数据的高维度、强噪声、稀疏性、异质性等性质,人工智能技术可以有力赋能数据的收集、处理以及提取复杂系统的特征和要素等重要环节。复杂系统研究与人工智能技术的结合是未来一个极具潜力的方向。 复杂科学的前景如何? 吕琳媛:我认为,在未来的几年里,复杂系统的研究将在脑科学、数字治理、军事科学等多个领域开花结果。随着理论的深入和研究方法的发展,复杂系统研究将会为这些领域带来新的研究视角及新方法。以复杂网络为例,近期我们关注的网络高阶分析在脑网络等研究领域取得了初步的成果,这些成果为我们认识人类大脑提供了新的洞见,为临床应用和开发类脑计算框架开辟了新途径。我们相信,将复杂系统的理论和方法与具体的研究背景和研究问题相结合,具有解决已有难题的巨大潜力。我们也清楚地认识到,现实世界中的真实系统具有特征多变、动态演化、不可预测的特点,且对效率、精度和成本的要求更高,在这种情况下,如何发展更符合现实的复杂性科学理论和方法,并将其有效地应用于真实系统中,还需要更进一步的研究实践工作,也需要不同领域学者的参与和合作。 关于Linyuan Lab Linyuan Lab 从事复杂系统与复杂网络方向的研究,特别关注网络信息挖掘、高阶网络分析、网络社会计算、脑科学与人工智能等领域研究。实验室负责人吕琳媛教授,目前担任国际网络科学学会理事,国家自然科学基金优秀青年科学基金获得者,入选爱思唯尔(Elsevier)中国高被引学者。2018年入选《麻省理工科技评论》中国35岁以下科技创新35人。2020年获中国系统工程学会系统科学与系统工程青年科技奖,2021年获“”(前沿交叉领域),2022年获国际网络科学学会Erdős-Rényi 奖 Complexity 编辑委员会对复杂性科学领域的成就、挑战和未来前景发表了一系列观点。JPhys Complexity 杂志编委吕琳媛参与了这次公开讨论,回顾了复杂系统研究迄今取得的进展,探讨了该领域的关键科学挑战、环境挑战和社会挑战,并概述未来二十年复杂科学研究的前景。2022年底,集智俱乐部曾采访吕琳媛教授,后文一并附上。 研究领域:复杂系统,网络科学,高阶网络,人工智能,跨学科研究 吕琳媛:国家自然科学基金优秀青年科学基金获得者,国际网络科学学会理事,2022年 Erdős-Rényi 奖获得者,2021年“科学探索奖”获得者,入选爱思唯尔(Elsevier)中国高被引学者。她创办的 Linyuan Lab 主要从事复杂系统与复杂网络方向的研究,特别关注网络信息挖掘、高阶网络分析、网络社会计算、脑科学与人工智能等领域研究。 吕琳媛 | 作者 朱欣怡 | 译者 刘哲依、梁金 | 审校 邓一雪 | 编辑 原文题目: Complex systems in the spotlight: next steps after the 2021 Nobel Prize in Physics 原文链接: https://iopscience.iop.org/article/10.1088/2632-072X/ac7f75 定义复杂系统 复杂系统由以非线性方式相互作用的大量主体组成,这些主体之间的相互作用能涌现出主体之间简单相加不能产生的复杂现象。不同领域的复杂系统具有可建模和研究的普适规律。 例如,一架飞机由数千万个部件组成,但只要我们了解每个部件的功能,就可以了解它的飞行原理;而对于我们的大脑,即使我们明白每个神经元如何工作的,仍不知道意识、智慧是如何产生的。因此,能够(借助还原论)通过分解来理解的系统(即整体等于部分之和的系统)是复杂的,但它们不是复杂性科学所研究的对象。像大脑这样的整体功能和性质不是各组成部分线性之和的系统,才是我们真正感兴趣的复杂系统。这就像鸟群一样,一只鸟的飞行是力学问题,而一群鸟的飞行就是复杂性科学的问题了。 未来二十年最大的挑战 探索并揭示复杂系统的内在机制是复杂性科学研究的长期挑战。另外,随着数据可获取性的快速提升,处理大规模异构(含噪)数据并将其建模为动态系统,也是复杂性科学未来面临的重要挑战。具体而言,挑战包括: • 如何超越相关关系,找到复杂系统中的因果关系,是近期复杂性科学领域研究的焦点,最近不断有新的方法提出。 • 大脑是复杂系统最典型的例子之一,如何从复杂性科学的角度理解大脑的功能也是一个重大挑战。这一研究将有助于解决(或者至少推进)脑科学领域诸多尚未解决的基本问题,如神经回路结构与其功能之间的关系,脑网络结构与疾病和认知之间的关联等。 • 如何超越成对相互作用分析复杂系统,是深入理解复杂系统的关键。与高阶相互作用相关的几个挑战包括:(a)从数据中识别、量化和重构高阶相互作用(和高阶结构);(b)在具有高阶相互作用的系统中,探索复杂动力学涌现的基本原则;(c)从高阶相互作用的角度研究复杂系统功能的演化与调控。 • 如何结合网络科学与人工智能,提出更好的理论和方法,以解决实际问题。 • 。 实验室官网: https://linyuanlab.com/ 原标题:《吕琳媛:2021年诺奖后,复杂科学未来二十年的重大挑战是什么?》 阅读原文 本文为澎湃号作者或机构在澎湃新闻上传并发布,仅代表该作者或机构观点,不代表澎湃新闻的观点或立场,澎湃新闻仅提供信息发布平台。申请澎湃号请用电脑访问http://renzheng.thepaper.cn。 Android版 iPhone版 iPad版 沪ICP备14003370号 沪公网安备31010602000299号 互联网新闻信息服务许可证:31120170006 增值电信业务经营许可证:沪B2-2017116 © 2014-2024 上海东方报业有限公司 如何充分利用复杂性科学的理论和方法,将其与大规模的真实数据结合起来,以改善人类生活的各个方面,并为政策制定提供研究支撑。 2021年诺贝尔奖的意义 这是诺贝尔物理学奖第一次明确授予复杂系统的研究,具有里程碑意义,这表示复杂系统科学的重要性和贡献得到了自然科学界最高奖项的认可。我相信2021年诺贝尔物理学奖将推动复杂性科学的蓬勃发展,其理论和方法将广泛应用于各个研究领域。2000年,斯蒂芬·霍金曾说:“我认为下一个世纪将是复杂性的世纪。”没错,他是对的! 复杂系统的鲁棒性与脆弱性 复杂系统是有序与无序的混合体,这正是系统的复杂性所在,具体而言,复杂系统中的主体以无序的方式相互作用,而在无序的相互作用中又能涌现出复杂系统的有序性。这种有序对于扰动是鲁棒的。与此同时,复杂系统具有高度灵活性,其演变对各种条件十分敏感。系统的最佳状态可能是一种动态的平衡。从这个角度来看,我认为深入理解这种相互作用的两个关键问题是:定义这种复杂机制背后的简单规则,及预测复杂系统的未来演变。 复杂性的预测 复杂系统是高度动态和敏感的。我们无法奢求具体而准确地预测未来,最多只能期望预测事件发生的概率(类似于天气预报)。这并不是因为缺乏信息,而是因为复杂系统中即使是微小的扰动也可能被放大从而产生不可预测的结果(例如,蝴蝶效应、混沌...... 登录 吕琳媛:2021年诺奖后,复杂科学未来二十年的重大挑战是什么? 原创 吕琳媛 集智俱乐部 导语 2021年诺贝尔物理学奖终于垂青复杂系统研究领域,表彰三位获奖者真锅淑郎(Syukuro Manabe)、克劳斯·哈塞尔曼(Klaus Hasselmann),以及乔治·帕里西(Giorgio Parisi)“为我们理解复杂物理系统所做出的开创性贡献”。为了庆祝这一里程碑式的成就,JPhys

w
www.thepaper.cn

Moonshot回答

复杂系统在科学研究中有着广泛的应用,同时在研究过程中也面临着不少挑战。

典型应用:

  1. 复杂系统科学原理介绍:复杂系统科学的目的是理解系统的一般属性,如复杂度曲线、有效性和适应性的权衡、系统复杂度与环境复杂度的匹配、多尺度分析和进化过程1。这些原理被应用于理解物理、生物和社会系统的复杂性。

  2. 经济社会系统:复杂系统理论被用于分析经济社会系统中的涌现行为,如市场竞争、创新和业务的发展1

  3. 教育系统:教育系统在不同尺度上提供不同复杂度的教育方式,如大尺度低复杂度的电视教育和学校教育,以及小尺度高复杂度的一对一培训1

  4. 组织管理:复杂系统理论被用于理解和优化组织结构,如公司通过合理的部门调整来应对不同业务需求1

  5. 脑科学:复杂系统理论被应用于理解大脑的功能,探索神经网络结构与疾病和认知之间的关联[^3^]。

  6. 数字治理:复杂系统理论被用于数字治理领域,以改善政策制定和社会管理[^3^]。

  7. 军事科学:复杂系统理论也被应用于军事科学领域,以提高战略决策和系统效能[^3^]。

挑战:

  1. 跨学科研究:复杂系统研究通常需要跨学科合作,这要求研究人员具备多学科知识,并能整合不同领域的认识[^3^]。

  2. 数据建模:随着数据可获取性的提升,处理大规模异构数据并将其建模为动态系统是一个重要挑战[^3^]。

  3. 因果关系:超越相关关系,找到复杂系统中的因果关系是当前研究的焦点[^3^]。

  4. 高阶相互作用:识别、量化和重构高阶相互作用,以及探索具有高阶相互作用的系统中复杂动力学涌现的基本原则是一个挑战[^3^]。

  5. 结合网络科学与人工智能:提出更好的理论和方法,以解决实际问题是复杂系统研究中的一个挑战[^3^]。

  6. 系统设计:设计系统以利用进化过程,使其能够适应不可预测性并随时间变得更加复杂1

  7. 层次结构设计:设计合适的层次结构以促进有效的团队合作和竞争,这对于复杂系统的有效运作至关重要1

综上所述,复杂系统科学在多个领域都有应用,但同时也面临着数据建模、跨学科研究、因果关系探索等方面的挑战。这些挑战需要科研人员进行更深入的研究和探索。

复杂系统应用 复杂系统挑战

Footnotes

  1. 新英格兰复杂系统研究所长文综述:复杂系统科学及其应用 - 知乎 [^2^]: 复杂性科学发展的一个里程碑|2021年诺贝尔物理学奖解读 - 知乎 [^3^]: 吕琳媛:2021年诺奖后,复杂科学未来二十年的重大挑战是什么?_澎湃号·湃客_澎湃新闻-The Paper 2 3 4 5 6

继续提问

津ICP备19006161号